
Carsten Waechter, March 2020

RTX-accelerated Hair
brought to Life with NVIDIA Iray (GTC 2020 S22494)

2

What is Iray?

Bring ray tracing based production /

simulation quality rendering to GPUs

New paradigm: Push Button rendering

(open up new markets)

Production Rendering on CUDA In Production since > 10 Years

Plugins for

3ds Max Maya Rhino SketchUp …

…

…

3

What is Iray?

NVIDIA Material Definition Language (MDL)
evolved from internal material representation into public SDK

NVIDIA OptiX 7
co-development, verification and guinea pig

NVIDIA RTX / RT Cores
scene- and ray-dumps to drive hardware requirements

NVIDIA Maxwell…NVIDIA Turing (& future) enhancements
profiling/experiments resulting in new features/improvements

Design and test/verify NVIDIA’s new Headquarter (in VR)

close cooperation with Gensler

NVIDIA testbed and inspiration for new tech

4

Simulation Quality

5

iray legacy

Artistic Freedom

6

How Does it Work?

To guarantee simulation quality and Push Button

• Limit shortcuts and good enough hacks to minimum

• Brute force (spectral) simulation

no intermediate filtering

scale over multiple GPUs and hosts even in interactive use

• Two-way path tracing from camera and (opt.) lights

• Use NVIDIA Material Definition Language (MDL)

• NVIDIA AI Denoiser to clean up remaining noise

99% physically based Path Tracing

7

How Does it Work?

To guarantee simulation quality and Push Button

• Limit shortcuts and good enough hacks to minimum

• Brute force (spectral) simulation

no intermediate filtering

scale over multiple GPUs and hosts even in interactive use

• Two-way path tracing from camera and (opt.) lights

• Use NVIDIA Material Definition Language (MDL)

• NVIDIA AI Denoiser to clean up remaining noise

99% physically based Path Tracing

8

Wavefront Architecture

Follows each path to completion

One path at a time

Single CUDA (mega-)kernel

From Megakernel to State Machine

Small progress on each path per step

Millions of active paths at a time

Multiple smaller CUDA kernels (states) specialized

on parts of the simulation (state machine)

Global memory (AoSoA layout) to communicate

between states

9

Iray on OptiX 7

All kernel variants that need to trace rays are now executed through OptiX 7

Path-/Light-Tracer main trace kernels

incl. SSS code and shortcuts for state machine early outs

Wavefront Architecture

10

Iray on OptiX 7

All kernel variants that need to trace rays are now executed through OptiX 7

Path-/Light-Tracer main trace kernels

incl. SSS code and shortcuts for state machine early outs

Path-/Light-Tracer shadow trace kernels

incl. few shortcuts for state machine early outs

Rounded Corners

Light-Tracer lens connection

All other kernels stay on plain CUDA implementations / kernel launches (for now)

Wavefront Architecture

11

Iray on OptiX 7

Split up the Tail-megakernel into 2 new kernels

Trace rays + the remainder of the state machine

Majority of code in __raygen__

One single optixTrace() call, no branching, for best performance

(except for Tail-trace- and rounded corners kernels)

__closesthit__ directly fills wavefront state, no payload communication

Compile time / Pipeline setup 7-10 secs (with warm cache 0.1-0.2 secs)

~21k lines of PTX

Wavefront Architecture

12

New in 2020.0 : Curves / Fibers

13

How Does it Work?

Iray 2020.0 exposes a subset

• Cubic B-Spline Basis

With vertex sharing (saves memory & bandwidth)

X curves combined into 1 connected fiber

• ISV responsible for conversion from spline bases to B-spline

Memory cost: no vertex sharing

Bezier and anything compatible, e.g., Catmull-Rom, Hermite, …

• Intersection code based on (improved) NVIDIA research tech

Fast, High Precision Ray/Fiber Intersection using Tight,
Disjoint Bounding Volumes Nikolaus Binder and Alexander Keller

Coop development on new OptiX 7.1 curve API

14

How Does it Work?

Material and Texture inputs

• MDL 1.6 hair BSDF

A Practical and Controllable Hair and Fur Model for Production Path
Tracing Chiang et al.

• Texture space

0: 1D along fiber [0..1]

1: per fiber: either user provided or
(by default) origin position of fiber in world space (1D, 2D or 3D)

2: per vertex: user provided (1D, 2D or 3D)

Fiber rendering

15

How Does it Work?

Intersection

• Separate hierarchies for triangles and fibers

• First trace triangle scene, then fibers for efficiency

• When using MDL hair BSDF

“Teleport” intersection point to other side of the fiber,
along normal, to be used as exit point

BSDF is supposed to handle most internal effects

• Continue with self intersection handling code

A Fast and Robust Method for Avoiding Self-Intersection
Carsten Waechter and Nikolaus Binder

Fiber rendering

16

When Does it Not Work?

Internal rays

• Current implementation limitation: Rays starting
inside a fiber will lead to undefined results, as
considered solid

• Thus: Secondary rays from fiber hits should be
launched from outside any fibers, which is difficult to
detect (e.g. millions of hairs)

• This limitation will hopefully vanish soon (newer
OptiX 7 releases)

• Artifacts usually (e.g. millions of hairs) not visible
though

Fiber rendering

17

How Fast is it?

Absolute: < 1min beauty FullHD

> 6 million fibers + MDL hair BSDF

Benchmarking different generations

• Exceptional performance increase

Comparing RTX on vs off

• And even when comparing exceptional triangle scenes

• So (usually) no need to triangulate for performance

Benchmark

18

Questions?

Acknowledgments

Iray Team / NVIDIA ARC Berlin

More Information

Techreport: The Iray Light Transport

Simulation and Rendering System

https://arxiv.org/pdf/1705.01263.pdf

https://raytracing-docs.nvidia.com/iray/index.html

Other sessions featuring Iray

Alita, Substance, and RTX [S22395]
David Crabtree, Build Lead, DNEG

Visuals as a Service (VaaS):

How Amazon and Others Create and Use Photoreal

On-Demand Product Visuals with RTX Real-Time

Raytracing and the Cloud [S21290]
Paul Arden, CEO, migenius

Thomas Dideriksen, Senior Software Developer, Amazon

Sharing Physically Based Materials Between

Renderers with MDL [S21220]
Lutz Kettner, Director, Adv. Rendering and Materials, NVIDIA

Jan Jordan, Senior Software Product Manager, NVIDIA

Photoreal Design Workflows with NVIDIA Iray: the

Siemens Experience [S22454]
Patti Longwinter, Senior Product Manager, Siemens

Alexander Fuchs, Senior Software Product Manager, NVIDIA

